On the Kernels of the Pro-l Outer Galois Representations Associated to Hyperbolic Curves over Number Fields

نویسندگان

  • Yuichiro HOSHI
  • Yuichiro Hoshi
چکیده

— In the present paper, we discuss the relationship between the Galois extension corresponding to the kernel of the pro-l outer Galois representation associated to a hyperbolic curve over a number field and l-moderate points of the hyperbolic curve. In particular, we prove that, for a certain hyperbolic curve, the Galois extension under consideration is generated by the coordinates of the l-moderate points of the hyperbolic curve. This may be regarded as an analogue of the fact that the Galois extension corresponding to the kernel of the l-adic Galois representation associated to an abelian variety is generated by the coordinates of the torsion points of the abelian variety of l-power order.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic Teichmuller Theory

By Grothedieck's Anabelian conjectures, Galois representations landing in outer automorphism group of the algebraic fundamental group which are associated to hyperbolic smooth curves defined over number fields encode all arithmetic information of these curves. The goal of this paper is to develope and arithmetic teichmuller theory, by which we mean, introducing arithmetic objects summarizing th...

متن کامل

Deformation of Outer Representations of Galois Group

To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...

متن کامل

Deformation of Outer Representations of Galois Group II

This paper is devoted to deformation theory of "anabelian" representations of the absolute Galois group landing in outer automorphism group of the algebraic fundamental group of a hyperbolic smooth curve defined over a number-field. In the first part of this paper, we obtained several universal deformations for Lie-algebra versions of the above representation using the Schlessinger criteria for...

متن کامل

Galois-theoretic Characterization of Isomorphism Classes of Monodromically Full Hyperbolic Curves of Genus Zero

Let l be a prime number. In the present paper, we prove that the isomorphism class of an l-monodromically full hyperbolic curve of genus zero over a finitely generated extension of the field of rational numbers is completely determined by the kernel of the natural pro-l outer Galois representation associated to the hyperbolic curve. This result can be regarded as a genus zero analogue of a resu...

متن کامل

Global Solvably Closed Anabelian Geometry

In this paper, we study the pro-Σ anabelian geometry of hyperbolic curves, where Σ is a nonempty set of prime numbers, over Galois groups of “solvably closed extensions” of number fields — i.e., infinite extensions of number fields which have no nontrivial abelian extensions. The main results of this paper are, in essence, immediate corollaries of the following three ingredients: (a) classical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013